Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Jens Beckmann, ${ }^{\text {a }}$ Dainis Dakternieks, ${ }^{a}$ Andrew Duthie, ${ }^{\text {a }}$ Laura Thompson ${ }^{\text {a }}$ and Edward R. T. Tiekink ${ }^{\mathbf{b}^{*}}$

${ }^{\text {a }}$ Centre for Chiral and Molecular Technologies, Deakin University, Geelong, Victoria 3217,
Australia, and ${ }^{\mathbf{b}}$ Department of Chemistry, National University of Singapore, Singapore 117543

Correspondence e-mail: chmtert@nus.edu.sg

Key indicators

Single-crystal X-ray study
$T=223 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.044$
$w R$ factor $=0.093$
Data-to-parameter ratio $=31.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexameric trimethylsilylmethyloxotin acetate, $\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right) \mathrm{Sn}(\mathrm{O})(\mathrm{OAc})\right]_{6}$

The centrosymmetric hexanuclear title compound, hexa-μ_{2}-acetato-hexa- μ_{3}-oxo-hexakis[(trimethylsilylmethyl)tin], [$\left.\mathrm{Sn}_{6} \mathrm{O}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{Si}\right)_{6}\right]$, adopts a 'drum' structure in which two $\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right) \mathrm{SnO}\right]_{3}$ caps are linked to each other via six $\mu_{3}-\mathrm{O}$ atoms and six bidentate bridging acetate groups. A CO_{5} donor set defines a distorted octahedral environment for each of the three independent Sn atoms.

Comment

The title compound, (I), was obtained as a hydrolysis product of $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$ (see Experimental). The structure (Fig. 1 and Table 1) adopts a hexameric drum motif as found previously for related species (see reviews: Tiekink, 1991, 1994).

(I)

The centrosymmetric structure may be described as comprising two $\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right) \mathrm{SnO}\right]_{3}$ rings that are linked in two complementary ways. Each of the three bridging oxo atoms of each ring connects to an Sn atom of the second ring, of opposite orientation, leading to the presence of six μ_{3}-oxo groups. The girth of the drum may be considered thus as six $\mathrm{Sn}_{2} \mathrm{O}_{2}$ rectangles arranged so as to form a tube. Six bidentate bridging acetate bridges afford additional links between the faces but, in this case, these diagonally span a $\mathrm{Sn}_{2} \mathrm{O}_{2}$ rectangle. The $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$ groups are oriented above and below the faces of the drum. A distorted octahedral CO_{5} geometry, defined by three O atoms derived from three $\mu_{3}-\mathrm{O}$ atoms, two carboxylate O atoms and a C atom of the Sn -bound substituent, is found for each Sn atom.

Experimental

The title compound, (I), was obtained as single crystals from a solution of authenticated $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$, presumably as a

Received 4 May 2004 Accepted 6 May 2004 Online 15 May 2004

Figure 1

The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level (Johnson, 1976).
result of cleavage of the $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$ group followed by hydrolysis upon standing. A solution of $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{SnPh}_{2}(10.00 \mathrm{~g}, 23.9 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ and concentrated acetic acid (80 ml) was stirred overnight under reflux. The organic layer was collected and the aqueous layer washed with additional $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed in vacuo to give $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$ as a clear liquid $\left(7.90 \mathrm{~g}, 86 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($299.98 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.06(s, 18 \mathrm{H}$, $\left.\mathrm{SiMe}_{3}\right), 0.47\left[s,{ }^{2} J\left({ }^{1} \mathrm{H}_{-}{ }^{117 / 119} \mathrm{Sn}\right)=100 / 105,4 \mathrm{H}, \mathrm{CH}_{2}\right], 1.90(s, 6 \mathrm{H}$, $\left.\mathrm{O}_{2} \mathrm{CMe}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.75.44 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.55\left[{ }^{3} \mathrm{~J}\left({ }^{13} \mathrm{C}-{ }^{117 / 119} \mathrm{Sn}\right)\right.$ $\left.=28, \mathrm{SiMe}_{3}\right], 9.22\left[{ }^{1} J\left({ }^{13} \mathrm{C}^{117 / 119} \mathrm{Sn}\right)=463 / 485, \mathrm{CH}_{2}\right], 20.63\left(\mathrm{O}_{2} \mathrm{CMe}\right)$, $180.38(\mathrm{C}=\mathrm{O}) ;{ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(111.85 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-118.5$. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Sn}\left(M_{r}=411.23\right)$: C $35.05, \mathrm{H}$ 6.86%; found: C 34.70, H 7.03%. Hexane (15 ml) was added to the $\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$ and the solution allowed to stand at room temperature for 2 d . Colourless crystals of $\left[\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right) \mathrm{S}\right.$ $\mathrm{n}(\mathrm{O})(\mathrm{OAc})]_{6}$ were collected $(0.37 \mathrm{~g}, 6 \%$ yield, m.p. $565-567 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR ($399.78 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.08\left(s, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 0.17\left[\mathrm{~s},{ }^{2} J\left({ }^{1} \mathrm{H}-{ }^{117 /}\right.\right.$ $\left.\left.{ }^{119} \mathrm{Sn}\right)=153 / 159,2 \mathrm{H}, \mathrm{CH}_{2}\right], 1.97\left(s, 3 \mathrm{H}, \mathrm{O}_{2} \mathrm{CMe}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75.44 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.20\left[{ }^{3} J\left({ }^{13} \mathrm{C}-{ }^{117 / 119} \mathrm{Sn}\right)=41, \mathrm{SiMe}_{3}\right], 13.07$ $\left[{ }^{1} J\left({ }^{13} \mathrm{C}^{117 / 119} \mathrm{Sn}\right)=959 / 1004, \mathrm{CH}_{2}\right], 24.33\left(\mathrm{O}_{2} \mathrm{CMe}\right), 178.51\left[{ }^{2} \mathrm{~J}\left({ }^{13} \mathrm{C}^{117 /}\right.\right.$ $\left.\left.{ }^{119} \mathrm{Sn}\right)=32, \mathrm{C}=\mathrm{O}\right] ;{ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.73 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-477.8$ $\left[{ }^{2} J\left({ }^{119} \mathrm{Sn}-\mathrm{O}-{ }^{117} \mathrm{Sn}\right)=249,{ }^{2} J\left({ }^{119} \mathrm{Sn}-\mathrm{O}-{ }^{117} \mathrm{Sn}\right)=123\right]$. Analysis calculated for $\mathrm{C}_{36} \mathrm{H}_{84} \mathrm{O}_{18} \mathrm{Si}_{6} \mathrm{Sn}_{6}$: C $25.65, \mathrm{H} 5.02 \%$; found: C 25.43 , H 4.92%.

Crystal data

$\left[\mathrm{Sn}_{6} \mathrm{O}_{6}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{Si}\right)_{6}\right]$	$D_{x}=1.717 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=1685.71$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 4788
$a=13.8888(7) \AA$	reflections
$b=18.8359(9) \AA$	$\theta=2.7-29.4^{\circ} \AA$
$c=13.9301(7) \AA$	$\mu=2.43 \mathrm{~mm}^{-1}$
$\beta=116.545(1)^{\circ}$	$T=223(2) \mathrm{K}$
$V=3260.1(3) \AA^{3}$	Plate, colourless
$Z=2$	$0.23 \times 0.18 \times 0.07 \mathrm{~mm}$

Data collection

Bruker AXS SMART CCD
diffractometer

ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.549, T_{\text {max }}=0.844$
27420 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.093$
$S=1.02$
9482 reflections
301 parameters

9482 independent reflections
7215 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=30.1^{\circ}$
$h=-17 \rightarrow 19$
$k=-23 \rightarrow 26$
$l=-19 \rightarrow 19$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.04 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.12 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\max }=-0.71 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Sn1-O1	2.078 (2)	Sn2-C11	2.113 (4)
$\mathrm{Sn} 1-\mathrm{O} 2$	2.079 (3)	Sn3-O1 ${ }^{\text {i }}$	2.075 (2)
Sn1-O3	2.080 (2)	Sn3-O2	2.066 (2)
Sn1-O4	2.157 (3)	Sn3-O3	2.099 (3)
Sn1-O6	2.150 (2)	Sn3-O7	2.152 (3)
$\mathrm{Sn} 1-\mathrm{C} 7$	2.117 (4)	Sn3-O9 ${ }^{\text {i }}$	2.149 (2)
Sn2-O1	2.085 (3)	Sn3-C15	2.114 (4)
Sn2-O2	2.085 (2)	Sn1-Sn2	3.2036 (4)
$\mathrm{Sn} 2-\mathrm{O} 3{ }^{\text {i }}$	2.075 (2)	Sn1-Sn3	3.2007 (4)
Sn2-O5	2.153 (3)	$\mathrm{Sn} 2-\mathrm{Sn} 3{ }^{\text {i }}$	3.2020 (4)
Sn2-O8	2.162 (3)		
O1-Sn1-O6	158.61 (10)	$\mathrm{O} 3^{\text {i }}-\mathrm{Sn} 2-\mathrm{O} 5$	158.49 (10)
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{C} 7$	178.06 (12)	$\mathrm{O} 1^{\text {i }}-\mathrm{Sn} 3-\mathrm{O} 7$	158.53 (10)
O3-Sn1-O4	162.12 (10)	$\mathrm{O} 2-\mathrm{Sn} 3-\mathrm{O} 9^{\text {i }}$	157.81 (10)
O1-Sn2-C11	175.60 (12)	$\mathrm{O} 3-\mathrm{Sn} 3-\mathrm{C} 15$	175.13 (13)
O2-Sn2-O8	159.53 (10)		

The C -bound H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances for methylene groups of $0.98 \AA$ and $\mathrm{C}-\mathrm{H}=0.97 \mathrm{~A}$ for methyl; $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{CH}_{2}\right)$ and $U_{\text {iso }}($ methyl H$)=1.5 U_{\text {eq }}\left(\mathrm{CH}_{3}\right)$. The largest residual electron density peak is located in the vicinity of the atom Sn 2 .

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The Australian Research Council and the National University of Singapore (R-143-000-213-112) are thanked for support.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bruker (2000). SMART (Version 5.6), SAINT (Version 5.6) and SADABS (Version 2.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.
Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.

